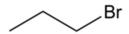
Chemical Hazard Assessments, Safer Ingredients, and Alternative Assessments: Three Tools for Reducing Toxics in Our Lives

Craig Manahan

Washington Department of Ecology

Hazardous Waste and Toxics Reduction

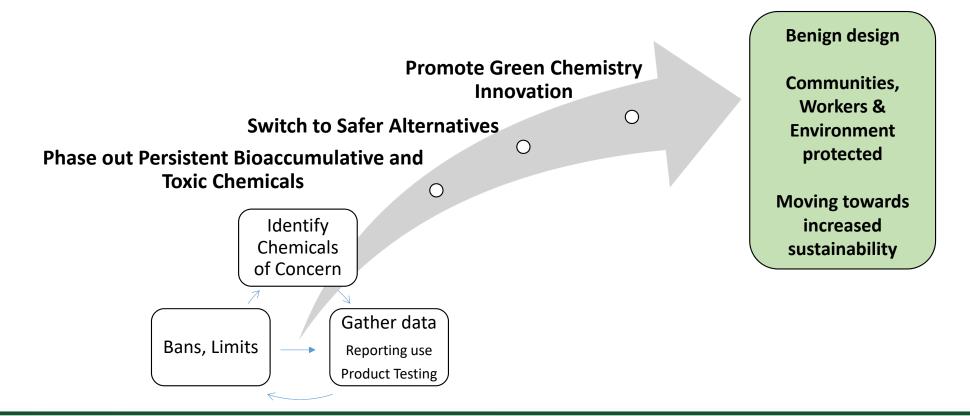
2013 NYT Video



Video here:

https://vp.nyt.com/video/2013/03/31/20021_1_cushion-makers_wg_480p.mp4

1-Bromopropane/N-propylbromide

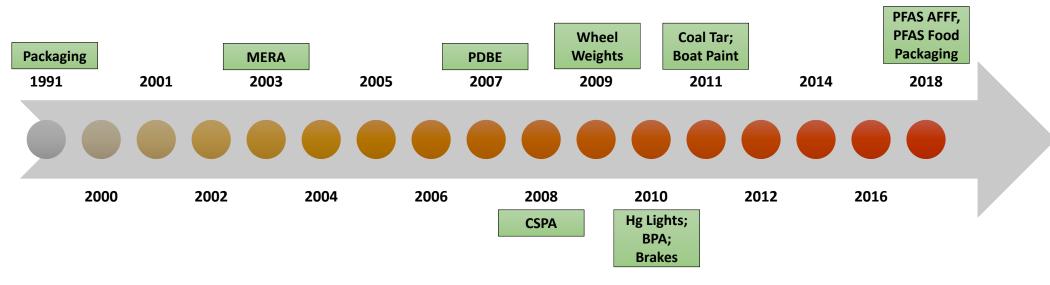


- Colorless liquid solvent
- Also used in asphalt production and cleaning products for auto body shops, dry cleaners, and electronics manufacturing
- Sheri worked for 5 years from 2007-2012 without adequate ventilation or respirators
- n-PB damaged nerve endings causing a "dead foot"
- Recommendations by ACGIH that fumes at workplace stay below 10 ppm (now 0.1 ppm), EPA recommends <25 ppm. Royale tested as "equal or greater than 100 ppm"
- OSHA still has no workplace limit for n-PB

Prevent and Reduce Toxic Threats

Averting toxic exposure is the smartest, cheapest, and healthiest approach.

WA Product Laws


LAW Title	Passed	RCW	Effective
Packages containing metals	1991	70.95G	July 1993
Mercury	2003	70.95M	Jan 2006
PBDE flame retardants	2007	70.76	Jan 2008/2011
Children's safe products	2008	70.240	July 2011/2017
Replacement of lead wheel weights	2009	70.270	Jan 2011
Bisphenol-A restrictions on sale	2010	70.280	July 2011/2012
Brake friction material	2010	70.285	Jan 2015
Stormwater pollution – Coal tar	2011	70.295	Jan 2012
Recreational water vessels - anti-fouling paint	2011	70.300	Jan 2018/2020
PFAS Aqueous Fire Fighting Foam	2018	70.75A	Jul. 2018/2020
PFAS Food Contact Material	2018	70.95G	Jan 2022

WA Chemicals Regulated

LAW Title	Chemicals
Packages containing metals	Lead, Mercury, Cadmium, Hex Chromium
Mercury	Mercury
PBDE flame retardants	Penta-, Octa-, and Deca-brominated diphenyl ethers
Children's safe products	Lead, cadmium, 6 phthalates, 5 flame retardants
Replacement of lead wheel weights	Lead
Bisphenol-A restrictions on sale	Bisphenol A
Brake friction material	Asbestos, Cadmium, Hex Chromium, Lead, Mercury, Copper
Stormwater pollution – Coal tar	Coal tar pitch, PAH
Recreational water vessels - anti-fouling paint	Copper
PFAS Aqueous Fire Fighting Foam	PFAS
PFAS Food Contact Material	PFAS

PAH: polycyclic aromatic hydrocarbons PCB: polychlorinated biphenyls

Timeline

PFAS-Containing Products

Electronics: High frequency signal transmission; smudgeresistant touch screens

Membranes in outdoor apparel, providing a breathable barrier against wind and rain

Medical Devices: High dielectric insulators in medical equipment that relies on high frequency signals

Healthcare: Garments/Drapes that Protect Against Disease Transmission

First Responder Gear Treatments and Bulletproof Vests that Maintain Performance in Extreme Conditions

Oil/Grease Resistant Food Packaging that is Recyclable, Increases Shelf-Life, Reduces Packaging

Aerospace/Auto: Weight reducing fuel lines; heat/chemical resistant wire coatings

Semiconductor manufacturing: Providing pure environments to transport/store harsh chemicals

Nonstick surfaces in cookware and small appliances

Textiles/Carpet with Water/Oil Repellency, Stain Resistance and Soil Release and Longer Useful Life

Class B (Flammable Liquid) Fire Fighting Foam with Shorter Extinguishing Time and Burnback Resistance

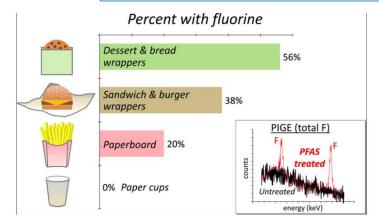
https://fluorocouncil.com/fluorocouncil/about/

https://pfas-1.itrcweb.org/wp-content/uploads/2018/03/pfas fact sheet naming conventions 3 16 18.pdf

*Buck, Robert C., et al. "Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins." *IEA&M* 7.4 (2011): 513-541.

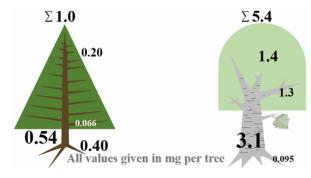
PFAS Concerns

- Cancer, Kidney and Liver Disease
- Weakened Childhood Immunity
- Low birth weight
- Altered development
- Food and drinking water most likely sources of exposure
- Persistent "Forever Chemical"



Why Food Packaging?

Not addressed by FDA approvals.


Some Potential Food-related PFAS Exposure Routes

- Food via PFAS in food-contact materials.
- Food/packaging to compost/biosolids to food.
 - o Beneficial reuse of manufacturing waste.
 - o Home recycling (e.g., Seattle), composting.
- · Releases from manufacturing operations.

Percent of food packaging with fluorine from nationwide study (Schaider et al., 2017 p. 105).

PFAS accumulate in plants

Food Packaging Restrictions

Revised Code of Washington 70.95G

January 2022

 No manufacture, sale or distribution of PFAS containing food packaging.

BUT first:

 "Identifies that safer alternatives are available, and the safer alternative determination is supported by feedback from an external peer review of the department's alternatives assessment":

http://app.leg.wa.gov/rcw/default.aspx?cite=70.95G https://fortress.wa.gov/ecy/publications/documents/1804034.pdf Hazardous Waste and Toxics Reduction Program

Focus on: Alternatives to PFAS in Food Packaging

What are PFAS? Per- and polyfluorinated substances (PFAS) are a class of synthetic chemicals used in including food packaging.

groundwater because they are water-soluble, highly mobile, and

Who is exposed to PFAS?

In recent years, PFAS have been detected in Washington lakes, streams, fish, and drinking water

Why does food packaging contain PFAS?

PFAS helps keep grease, oil, and water from penetrating food packaging, such as paper and paperboard. Common examples

· Restaurant take-out boxes.

Washington State will ban PFAS in food packaging In 2018, the Washington State legislature passed a new law that prohibits all per- and polyfluorinated substances (PFAS) in paper food

packaging. This PFAS ban is part of the <u>Toxics in Packauing Law (RCW 70.95G)</u>. In 1991, the Washington State legislature passed RCW 70.95G to limit the amount of four toxic metals (mercury, cadmium, lead, and hexavalent chromium) in packaging sold in the state.

When will PFAS be banned in food packaging?

Safer alternatives to PFAS in food packaging must be available before the ban takes effect. The law requires Ecology to study PFAS in food packaging and assess the safety of alternatives. The ban will take effect

January 2022, after we:

In 2018, this law was amended to add PFAS.

Identify safer alternatives.
 Receive feedback from an external peer review.
 Publish the findings in the Washington State Register.

How do I comment on and stay updated?

Ecology and Department of Health are working together to develop a PFAS Chemical Action Plan (CAP).2 The goal of a CAP is to identify the potential health and environmental effects of persistent, bloaccumulative and toxic chemicals, and recommend actions to reduce or eliminate those impacts.

We have a PFAS CAP listsery where you can receive updates. To subscribe, visit the <u>CAP Advisory Committee website</u>. We will host periodic conference calls to share updates on the PFAS AA. Those updates and any documents will be posted on the CAP website.

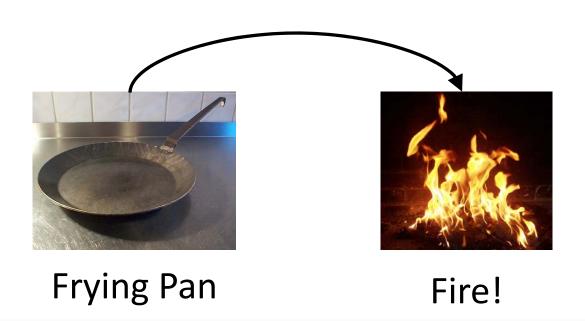
http://appleg.wa.gov/RCW/default.aspx?Cite=70.95G ecology.wa.gov/PFAS https://www.ezvirw.wa.gov/?alias=1962&pageid=37105

Assess Viable Alternatives

Alternatives Assessment- Process for <u>identifying and</u> <u>comparing</u> potential chemical and non-chemical existing alternatives used as substitutes to replace chemicals or technologies of high concern.

Look at Hazard, Exposure, Performance, Cost/Availability, Materials

Management, Social Impact, Life Cycle



Phase out hazardous chemicals? YES! But what about the alternatives?

Regrettable Substitution Process example- Glue Spray Adhesives

New York Times, March 30, 2013

1,1,1-trichloroethane (TCE)

-damages ozone

-Neurotoxin

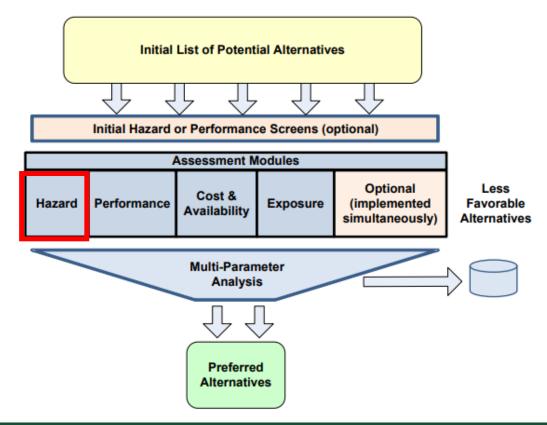
Methylene Chloride

(OSHA PEL)

-Safe for ozone

-Carcinogen/Neurotoxin

n- Propyl bromide

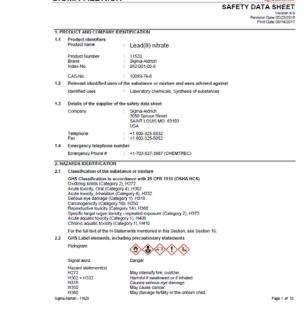

(no OSHA PEL)

-Safe for ozone

-Carcinogen/CNS

Example Frameworks for AA

What are the Chemical Hazards?


SIGMA-ALDRICH

How would you find out?

SDS

Example Chemical Hazards

Huma	n Health	Environmental Toxicity & Fate	Physical Hazards
Carcinogenicity	Acute Mammalian Toxicity	Acute/Chronic Aquatic Toxicity	Reactivity
Mutagenicity & Genotoxicity	Systemic Toxicity & Organ Effects	Terrestrial Toxicity	Flammability
Reproductive Toxicity	Neurotoxicity	Bioaccumulation	Eutrophication
Developmental	Skin Sensitization		
Toxicity	Respiratory Sensitization	Persistence/ Biodegredation	
Endocrine	Skin Irritation	Ozone Depletion	
Activity	Eye Irritation	Ozone Depiction	

Scorecard

High

Medium

√Low

International Agency for Research on Cancer

IARC Monographs on the Identification of Carcinogenic Hazards to Humans

Authoritative Lists

AGENTS CLASSIFIED BY THE IARC MONOGRAPHS, VOLUMES 1-123

Group 1	Carcinogenic to humans	120 agents
Group 2A	Probably carcinogenic to humans	82
Group 2B	Possibly carcinogenic to humans	311
Group 3	Not classifiable as to its carcinogenicity to humans	500

CAS No.	Agent		♦ Year ♦
989-38-8	Rhodamine 6G	3 16, Sup 7	1987
1071-83-6	Glyphosate	2A 112	2017
1072-52-2	2-(1-Aziridinyl)ethanol	3 9, Sup 7	1987
1116-54-7	N-Nitrosodiethanolamine	2B 17, Sup 7, 77	2000
1120-71-4	1,3-Propane sultone	2A 4, Sup 7, 71, 110	2017
1143-38-0	Dithranol	3 13; Sup 7	1987

GLYPHOSATE

1. Exposure Data

1.1 Identification of the agent

1.1.1 Nomenclature

methyl)glycine

Chem. Abstr. Serv. Reg. No.: 1071-83-6 (acid); also relevant: 38641-94-0 (glyphosate-isopropylamine salt) 40465-66-5 (monoammonium salt) 69254-40-6 (diammonium salt) 34494-03-6 (glyphosate-sodium) 81591-81-3 (glyphosate-trimesium) Chem. Abstr. Serv. Name: N-(phosphonomethyl)glycine

Preferred IUPAC Name: N-(phosphono-

1.1.2 Structural and molecular formulae and relative molecular mass

$$H$$
 N
 H_2C
 OH
 CH_2
 OH

Molecular formula: C₃H₈NO₅P Relative molecular mass: 169.07 Additional information on chemical structure is also available in the PubChem Compound database (NCBI, 2015).

GreenScreen List Translator

GreenScreen Hazard Endpoints
& Hazard Criteria

GREENSCREEN BENCHMARK-1

- PBT = High P + High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- b. vPvB = very High P + very High B
- vPT = very High P + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- d. vBT = very High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

Chemicals of High Concern?

LT-1 = Yes!

LT-P1 = Possibly

LT-UNK or NoGSLT = ??

Lists

Criteria

Score

From https://www.greenscreenchemicals.org

GreenScreen List Translator Published Method

SECTION V — ANNEX 12

GreenScreen List Translator™ Map

TABLE A12.1: Human Health and Ecotox Lists (Single Hazard Endpoints)

		GreenScreen	Supporting List Information	GreenScreen List Translator GreenScreen Hazard List Type A or B Hazard Range Display in Hazard Box To Carcinogenicity Authoritative A H H												
	D	List	Sublist Category		List Type			Hazard	List Translator Score							
	211	IARC	Group 1 – Agent is Carcinogenic to humans	Carcinogenicity	Authoritative	Α	Н	Н	1							
>	212	IARC	Group 2a – Agent is probably Carcinogenic to	Carcinogenicity	Authoritative	Α	Н	Н	1							
	213	IARC	Group 2b – Possibly carcinogenic to humans	Carcinogenicity	Authoritative	Α	М	М	UNK							
	214	IARC	Group 3 – Agent is not classifiable as to its carcinogenicity to humans	Carcinogenicity	Authoritative	В	H, M, or L	UNK	UNK							

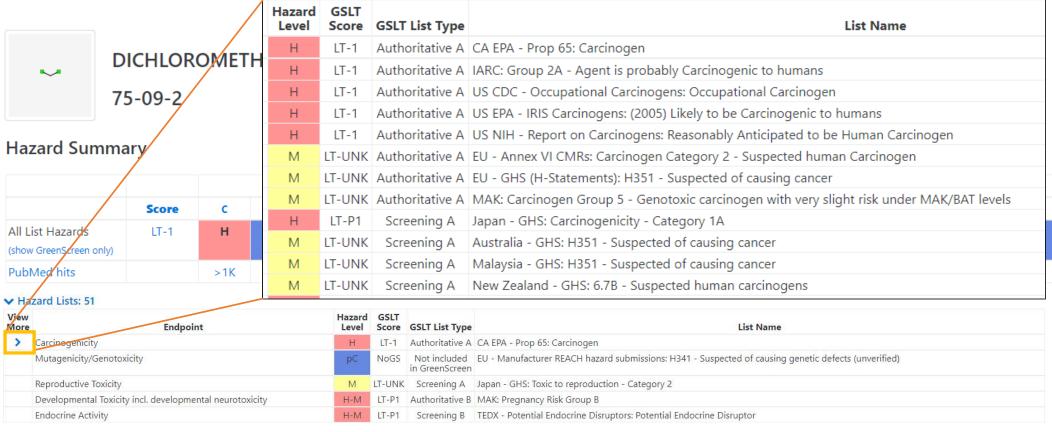
From https://www.greenscreenchemicals.org

GreenScreen List Translator Example

DICHLOROMETHANE aka Methylene Chloride

75-09-2

Hazard Summary


			Gro	oup I H	uman					Group	II and II* Hur			Ecoto	Х	Fate				
	Score	С	M	R	D	E	AT	ST	ST	N	N	SnS	SnR	IrS	IrE	AA	CA	ATB	Р	В
All List Hazards (show GreenScreen only)	LT-1	Н	pC	М	Н-М	Н-М	М	рС	рС	M-L	vH-M			Н	Н	М		М	vH-H	рС
PubMed hits		>1K	466	29	20	42	131	68	68	41	41	0	43	20	7	4	8	-	28	9

✓ Hazard Lists: 51

View More	Endpoint	Hazard Level		GSLT List Type	List Name
>	Carcinogenicity	Н	LT-1	Authoritative A	CA EPA - Prop 65: Carcinogen
	Mutagenicity/Genotoxicity	рС	NoGS	Not included in GreenScreen	EU - Manufacturer REACH hazard submissions: H341 - Suspected of causing genetic defects (unverified)
	Reproductive Toxicity	M	LT-UNK	Screening A	Japan - GHS: Toxic to reproduction - Category 2
	Developmental Toxicity incl. developmental neurotoxicity	H-M	LT-P1	Authoritative B	MAK: Pregnancy Risk Group B
	Endocrine Activity	H-M	LT-P1	Screening B	TEDX - Potential Endocrine Disruptors: Potential Endocrine Disruptor

GreenScreen List Translator Example

Compare Chemical Hazards

X LT-P1 [71-55-6] 1,1,1-Trichloroethane

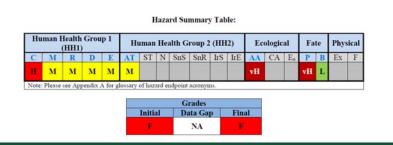
									GreenScreen	List Transla	tor™ Score	e - LT-F	1 ②							
- 35	G	Group I Human (?)														Fate ②	4	Physical (3	Mult* ?
C	М	R	D	E	AT	. 7	ST		N	SnS*	SnR*	IrS	IrE	AA	CA	Р	В	Rx	F	
						single	repeated*	single	repeated*											
М		M	MorL		м	Н	Н	UNK				Н	н	νΗ	М	vH or H				Mult

X LT-1 [75-09-2] Dichloromethane

									GreenScreen	List Transla	tor™ Score	e-LT-1	1							
	Group I Human (?) Group II and II* Human (?)															Fate ②				
C	M	R	D	E	AT		ST		N	SnS*	SnR*	IrS	IrE	AA	CA	P B		Rx F		
						single	repeated*	single	repeated*											
н		M	H or M	H or M	М	Н	H	UNK				Н	Н	М	М	vH or H				Mult

(X) LT-1 [106-94-5] 1-Bromopropane

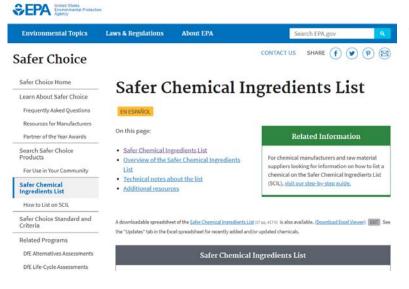
	GreenScreen List Translator™ Score - LT-1 [®]																			
	Group I Human (?) Group II and II* Human (?)													Ecot	ox ②	Fate ②		Physical	(?)	Mult* ②
C	M	R	D	E	AT		ST		N	SnS*	SnR*	IrS	IrE	AA	CA	P	В	Rx	F	
						single	repeated*	single	repeated*											
н		н	н		М	м	Н	MorL				н	н	М	М	vH or H			н	Mult



Assess and Prioritize Chemical Hazards

Example Tools

- ChemHAT
- GreenScreen® List Translator Tools +
 - Chemical Hazard Data Commons
 - ToxNot
 - Pharos
- Quick Chemical Assessment Tool (QCAT)
- GreenScreen®



EPA Safer Choice

Safer Chemical Ingredient List

Please Select: All Functional Use Classes

or Select a Functional Use Class:

- Antimicrobial Actives
- Chelating Agents
- Colorants
- Defoamers
- Emollients
- Enzymes and Enzyme Stabilizers
- Fragrances
- Oxidants and Oxidant Stabilizers
- Polymers
- Preservatives and Antioxidants
- Processing Aids and Additives
- Skin Conditioning Agents
- Solvents
- Specialized Industrial Chemicals
- Surfactants
- Uncategorized

CLEANGREDIENTS

Safer Choice Approved Ingredients:

- Product Name
- Company
- Functional Class
- Max use %
- Direct Release Criteria

https://cleangredients.org/database/

www.epa.gov/saferchoice/safer-ingredients

EPA Safer Choice Product Labeling Program

epa.gov/dfesaferchoice

Search Products that Meet the Safer Choice Standard

EN ESPAÑOL

Looking for safer cleaning and other products? Use the search box below to find products that meet the Safer Choice Standard.

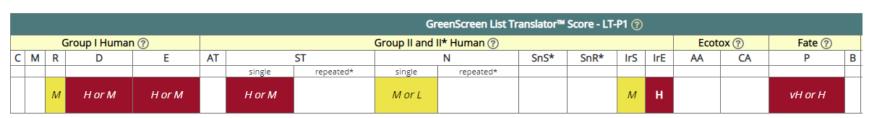
https://www.epa.gov/saferchoice/products

Some product types:

- All Purpose Cleaners
- Floor Strippers
- HVAC Maintenance
- Medical Instrument Cleaners
- Odor Removers
- "Other Business Products"

Regrettable Substitution Alternatives

Epr See girk Emrs


U.S.

WHICH DE ST. I SHARE STORME WOULD SHARE S

67-64-1

- 2001 EPA Alternatives Assessment
 - Water-based Latex Adhesives
 - Acetone-based Adhesives

On Safer Chemical Ingredient List¹

Acetone

[67-64-1] LT-P1 Acetone

Specialized

Industrial

Chemicals

									GreenScreen L	ist Translat	or™ Score	- LT-1 (?				
	Group	l Huma	n (?)					Ecot	ox ②	Fate ?							
С	М	R	D	Е	AT		ST		N	SnS*	SnR*	IrS	IrE	AA	CA	Р	В
						single	repeated*	single	repeated*								
н		н	н		М	М	М	M or L				н	н	М		vH or H	

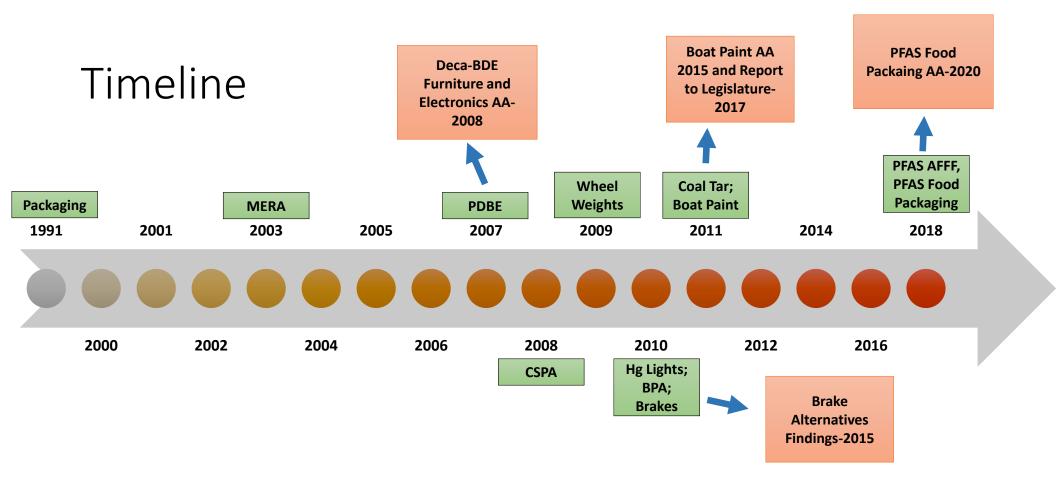
[106-94-5] LT-1 1-Bromopropane

Best!

Regrettable Substitution Alternatives

- Softed State Security Security
- 2011 DTSC Alternatives Assessment
 - Water-based Latex Adhesives
 - Acetone-based Adhesives
 - On Safer Chemical Ingredient List

Figure 1: GreenScreen® Hazard Ratings for Acetone

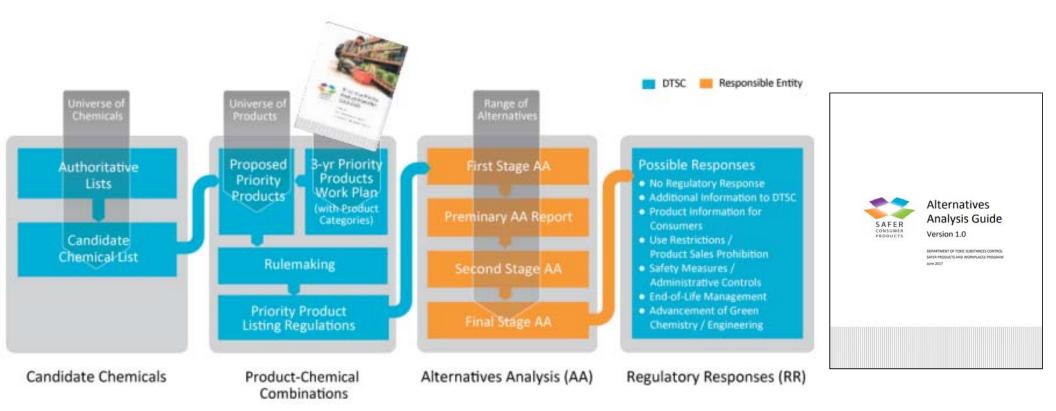

_	1 igure 1. Greensereen Trazara Ratings to															_			
	Grou	ıp I H	uman				Eco	tox	Fate		Phys	sical							
C	M	R	D	E	AT		ST		N	SnS*	SnR*	IrS	IrE	AA	CA	P	В	Rx	F
						single	repeated*	single	repeated*										
L	L	М	М	М	L	М	М	М	М	L	L	М	Н	L	L	νL	νL	L	Н

BM-2

[67-64-1] Acetone

GreenScreen List Translator™ Score - LT-1 ⑦													?				
	Group	I Huma	n			Group II and II* Human ② Ecotox ③ Fate ③											
С	М	R	D	Е	AT	AT ST		N		SnS*	SnR*	R* IrS IrE		AA	CA	P B	
						single	repeated*	single repeated*									
н		н	н		М	М	М	M or L				н	н	М		vH or H	

[106-94-5] LT-1 1-Bromopropane



Senate Bill 5135-Pollution Prevention For Our Future Act

- Every 5 years Ecology must
 - Identify 5 priority chemicals
 - Priority consumer products that are a source of priority chemicals
 - Determine regulatory actions on use of priority chemicals in priority consumer products
 - No action, provide notice, restrict or prohibit, require information.
 - To restrict or prohibit-the agency must determine "safer alternatives are feasible and available"

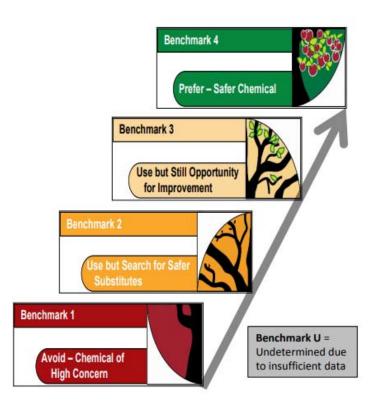
California DTSC Priority Products

Training Opportunity: OSHA 7225-Transitioning to Safer Chemicals

- OSHA's seven-step substitution planning process
- Hands-on activities connect to:
 - Case Studies
- Tools, related resources and databases

https://osha.washington.edu/osha/course/transitioning-safer-chemicals

2019 dates posted!



Thank You Any Questions?

Craig Manahan Craig.Manahan@ecy.wa.gov

Overall Chemical Grading System: GreenScreen®

Benchmark 1 (BM-1) criteria									
PBT	Persistent and Bioaccumulative and Toxic (human or environment)								
vPvB	Very Persistent and very Bioaccumulative								
vPT	Very Persistent and Toxic (human or environment)								
vBT	Very Bioaccumulative and Toxic (human or environment)								
CMRDE	Carcinogen, and/or mutagen, and/or reproductive or developmental toxicant, and/or endocrine disruptor								

From https://www.greenscreenchemicals.org

Make More Informed Decisions: Which Chemical Would YOU Use?

Th	The chemical of concern is a solvent used in cleaning products				Reproductive	Developmental	Endocrine	Acute Toxicity	Systemic Toxicity	Systemic Toxicity	Neurotoxicity	Neurotoxicity*	Skin Sensitization	Respiratory Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic	Chronic Aquatic	Persistence	Bioaccumulation	Reactivity	Flammability	
	Chemical Name	Score	С	М	R	D	E	AT	ST	ST*	N	N*	SnS*	SnR*	IrS	IrE	AA	CA	P	В	Rx	F	
	Chemical of	GS																					
	Concern	BM 1	Н	Н	Μ	М	DG	νH	L	М	L	М	Н	Н	Н	Н	νH	νH	νH	νH	L	L	
	Alternative Alpha	GS BM 2	L	М	L	L	DG	L	М	М	Μ	М	М		Μ	М	М			М	М	М	
	Alternative Beta	GS BM 2	м	DG	L	L	М	Н	DG	DG	М	М	М	М	М	Н	М	М	Н	М	М	М	

Paint Strippers- Unintended Consequences

2010- male 52, co-owner of a bathtub refinishing company, - refinishing a bathtub in an apartment bathroom that was approximately 5 feet by 8 feet with an 8-foot ceiling. He was using a product that contained 60%—100% methylene chloride. The bathroom ceiling had a 50 cubic feet per minute ventilation fan; however, the fan was off. The man wore latex gloves and did not wear respiratory protection or use engineering controls (e.g., a local exhaust ventilation system) to vent the methylene chloride vapor.

.....

An apartment maintenance man entered the apartment to look for the man and found him behind the closed bathroom door, unresponsive, and slumped over the tub.

....

The man was declared dead at the hospital.

References- https://www.youtube.com/watch?v=8lG6dAZE52k&feature=youtu.be&list=PL43A44D61109073BC https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6107a2.htm?s cid=mm6107a2 w

OSHA Toolkit for Transitioning to Safer Chemicals

Home

Why Transition to Safer Alternatives?

Basics of Informed Substitution and Alternatives Assessment

Success Stories

Explore the Steps

Welcome.

American workers use tens of thousands of chemicals every day. While many of these chemicals are suspected of being harmful, only a small number are regulated in the workplace.

As a result, workers suffer more than 190,000 illnesses and 50,000 deaths annually related to chemical exposures. Workplace chemical exposures have been linked to cancers, and other lung, kidney, skin, heart, stomach, brain, nerve, and reproductive diseases.

Establishing a chemical management system that goes beyond simply complying with OSHA standards and strives to reduce or eliminate chemical hazards at the source through informed substitution best protects workers. Transitioning to safer alternatives can be a complex undertaking, but a variety of existing resources make it easier. OSHA has developed this step-by-step toolkit to provide employers and workers with information, methods, tools, and guidance on using informed substitution in the workplace.

By using this toolkit, businesses can improve worker well-being through eliminating or reducing hazardous chemicals, while creating other benefits, including:

- · Cost Savings Reduce expenses and future risks.
- Efficiency Improve performance.
- Industry Leadership Invest in innovation to stay competitive.
- Corporate Stewardship Advance socially responsible practices.

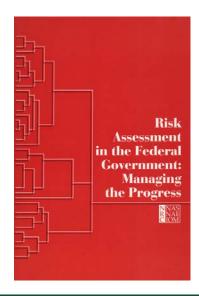
This toolkit can be used by all types of businesses—tit is for manufacturers using chemicals in their production processes as well as for businesses that use products containing chemicals in their everyday operations. For example, service-oriented workplaces (such as jaintional companies, auto body repair shops, and pathology labs) and construction work sites often use products containing chemicals that could present hazards to workers.

Workers also can use this toolkit to better understand chemical use in their workplace, find opportunities for using safer chemicals, and engage with their employers throughout the process of identifying, evaluating, and transitioning to safer alternatives.

OSHA wants to help businesses thrive safely by asking them to look at their chemical use and adopt ways to reduce the use of hazardous chemicals.

Tonether OSHA employers and workers can protect America's workforce and strengthen America's husinesses

www.osha.gov/dsg/safer_chemicals/



Common Question

Is the Chemical or material safe enough for its intended use?

Risk Assessment

- Evaluates whether products on the market impact human health and the environment
 - Determine hazard(s)
 - <u>Estimate</u> exposure
 - Decide does the product cause harm during intended use?

Online Green Chemistry and Chemical Stewardship **Certificate Program** CONTINUING EDUCATION PROGRAMS NORTHWEST CENTER FOR OCCUPATIONAL HEALTH AND SAFETY

67% of global executives agree that sustainability strategies are necessary to be competitive.*

Sept 27, 2017-June 8, 2018

COMPLIMENTARY INFORMATION SESSIONS April 18, 2017 10:00-11:00 am May 23, 2017 12:00-1:00 pm July 11, 2017 5:30-6:30 pm Sessions hosted via Adobe Connect

All times are PST. To sign up for an online information session, visit the eLearning page of our website, osha.washington.edu

> REGISTRATION Registration open: March 1, 2017 \$910 per course Successful completion of all

receive a certificate. Register online at

Businesses are facing increasing market and regulatory pressures to use less toxic chemicals in their manufacturing processes and products, and are in need of professionals who can provide innovative solutions and more sustainable substitutes.

WHAT YOU WILL LEARN

- During this 3-course program, we will explore:
- The 12 guiding principles of green chemistry
 Business drivers and barriers to implementing sustainable practices Frameworks for incorporating chemical toxicity and human health considerations into product design, material selections, and supply chain decision-making
- Environmental, economic, and societal benefits of green cher · The latest research and regulatory developments in the field
- New tools for chemical design and methods for comparative chemical

THIS PROGRAM IS FOR YOU

- Engineers, chemists, and materials scientists
- · Environmental product managers Supply chain decision-makers
- Risk management researchers
 Product stewardship professionals
- · Safety and health professionals
- Graduate level students in related fields
- · High School teachers and academic faculty

Designed for:

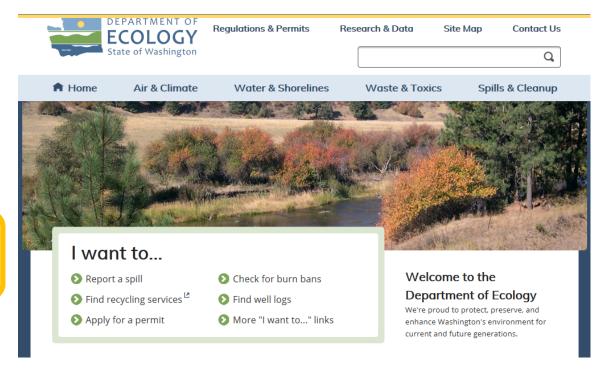
Professionals interested in learning and applying the principles of alternative chemistries and green toxicology in their work

First Certificate started in 2015

2019 Enrollment information available now.

Three-course online certificate program

- 1. Sustainability, Toxicology & Human Health
- 2. Principles of Green Chemistry
- 3. Assessment Tools for Safer Chemical **Decisions**


https://osha.washington.edu/pages/green-chemistry-chemical-stewardship-online-certificate-program

Washington Department of Ecology

Do we regulate PFAS?

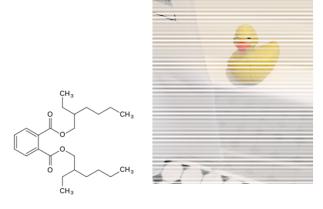
- Dangerous waste rule.
- Children's safe products reporting rule.
- Chemical action plan under PBT rule.
- Firefighting foam law.
- Food contact paper law.

https://ecology.wa.gov/

What if Safer Alternatives don't Exist?

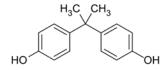
Green Chemistry: The **design** of chemical products and processes that **reduce or eliminate** the use and generation of hazardous substances.

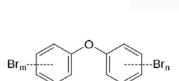
- What is the function of the product?
- How can I meet this function using Green Chemistry Principles?

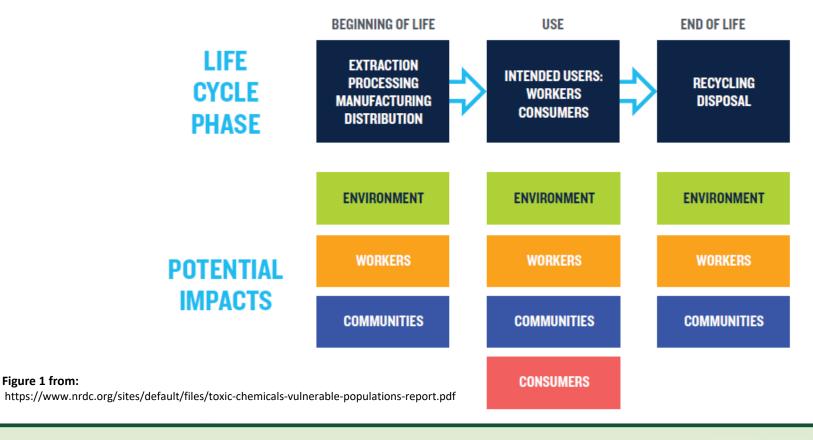


Exposure

*Anastas, P.T.; Warner, J.C., Green Chemistry: Theory and Practice, Oxford University Press, 1998.



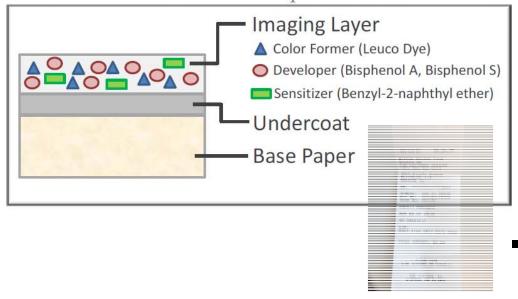

What do a duck, a couch, and thermal receipts have in common?

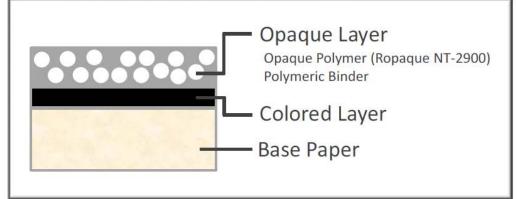

10 1041	
100 1 100 W 100 11	
100 1 100 W 100 11	
100 1 100 W 100 11	
100 1 100 W 100 11	
100 1 100 W 100 11	
100 1 100 W 100 11	
700 THE STREET	

Life Cycle of a Product

Bisguaiacol F (BGF)

Innovation- new Chemical


- Thermosets
- Thermoplastics


Thermal Papers

2017 Presidential Green Chemistry Challenge Award Winner

Traditional Thermal Paper Structure

New Voided Thermal Paper Structure

Complete elimination of chemical developer

https://www.epa.gov/greenchemistry/presidential-greenchemistry-challenge-winners

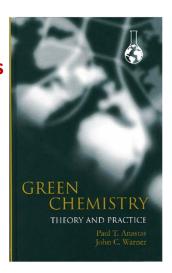
Thermal Paper Figure from:

Dow and Koehler's joint Presidential Green Chemistry Nomination Application

12 Principles of Green Chemistry

Eliminate/Reduce Hazard

(3,4,5,10,12)


Minimize Material, Waste and Energy use

(1,2,6,8,9,11)

Renewable Feedstock

(7)

- 1. Prevention
- 2. Atom Economy
- 3. Less Hazardous Chemical Synthesis
- 4. Designing Safer Chemicals
- **5. Safer Solvents and Auxiliaries**
- 6. Design for Energy Efficiency
- 7. Use of Renewable Feedstocks
- 8. Reduce Derivatives
- 9. Catalysis
- 10. Design for Degradation
- 11. Real-time Analysis for Pollution Prevention
- 12. Inherently Safer Chemistry for Accident Prevention

Some other trainings/webinars

Regulations & Permits Research & Data Site Map Contact Us Q Search

♠ Home

Air & Climate

Water & Shorelines

Waste & Toxics

Spills & Cleanup

Training and events

Ecology works with other organizations to offer webinars, in-person training, and other opportunities to build the skills you need to explore safer chemicals.

Safer Chemistry Training for Businesses <a>I™

This collection of webinars introduces basic green chemistry concepts but also teaches advanced lessons in specific tools and applications of green chemistry.

Transitioning to Safer Chemicals training

This 1.5-day course from the University of Washington School of Public Health and the U.S. Occupational Safety and Health Administration teaches participants about transitioning to safer chemicals and the key methods, tools, and databases that can assist in that process.

· University of Washington's Green Chemistry & Chemical Stewardship Online Certificate

This 8-month online program teaches participants fundamental principles of green chemistry and frameworks for incorporating toxicity and human health into product design, material selections, and supply chain decision-making.

GreenScreen® hazard assessment trainings

Find a wide range of training options for all levels of expertise ranges from free introductory online webinars to in-depth training to assess chemical hazards as an Authorized GreenScreen® Practitioner™.

Online Summer Green Chemistry Courses for High School teachers

Introductory and Advanced online summer courses are offered each year to provide educators tools to integrate green chemistry principles and practices into their classroom. These courses are online and structured in an interactive go-at-your-own-pace format. Optional graduate education credits available.

YouTube playlist of training videos \(\text{\textsup} \)

Check out past Safer Choice webinars, an OSHA 7225 training, and more on our YouTube

Ecology.wa.gov/SaferAlternatives

GreenScreen List Translator:

https://www.greenscreenchemicals.org/resources/entry/webinar-a-dive-intogreenscreen-list-translator

Data Commons:

https://www.greenscreenchemicals.org/resources/entry/webinar-chemicalhazard-data-commons

Green Chemistry - Finding Safer Alternatives for Occupational Applications https://youtu.be/ F5t10ZgPII

Safer Choice:

https://www.beyondbenign.org/webinar/epa-safer-choice-program/

Toxics in Packaging Law (RCW 70.95G)

- Amended in 2018 to include PFAS in food packaging
- (1) Beginning January 1, 2022, no person may manufacture, knowingly sell, offer for sale, distribute for sale, or distribute for use in this state food packaging to which PFAS chemicals have been intentionally added in any amount. This prohibition may not take effect until the department of ecology completes the following: (a) Identifies that safer alternatives are available, and the safer alternative determination is supported by feedback from an external peer review of the department's alternatives assessment; and (b) publishes findings, as required under subsection (3) of this section.

Toxics in Packaging Law (RCW 70.95G)

- (2) To determine whether safer alternatives to PFAS chemicals exist, the department of ecology must conduct an alternatives assessment as part of the PFAS chemical action plan that:
 - (a) Evaluates less toxic chemicals and nonchemical alternatives to replace the use of a chemical;
 - (b) Follows the guidelines for alternatives assessments issued by the interstate chemicals clearinghouse; and
 - (c) Includes, at a minimum, an evaluation of chemical hazards, exposure, performance, cost, and availability.
- (3) By January 1, 2020, the department of ecology must publish its findings in the Washington State Register on whether safer alternatives to PFAS chemicals in specific applications of food packaging are available for each assessed application and submit a report with the findings and the feedback from the peer review of the department's alternatives assessment to the appropriate committees of the legislature. In order to determine that safer alternatives are available, the safer alternatives must be readily available in sufficient quantity and at a comparable cost, and perform as well as or better than PFAS chemicals in a specific food packaging application. If an alternative is a chemical, it must have previously been approved for food contact by the United States food and drug administration, such as through the issuance of a determination that the chemical has a reasonable certainty of causing no harm.

Toxics in Packaging Law (RCW 70.95G)

- 4) The prohibition on the use of PFAS chemicals in food packaging:
 - (a) Becomes effective January 1, 2022, if the report required under subsection (3) of this section finds that safer alternatives are available for specific food packaging applications;
 - (b) Does not take effect January 1, 2022, if the report required under subsection (3) of this section does not find that safer alternatives are available for specific food packaging applications.
- (5) If the department of ecology does not find that a safer alternative is available for some or all categories of food packaging applications, beginning January 1, 2021, and each year following, the department of ecology must review and report on alternatives as described in subsection (2) of this section. The prohibition in this section for specific food packaging applications takes effect two years after a report submitted to the legislature required under subsection (3) of this section finds that safer alternatives are available.